venerdì, Aprile 19, 2024
0 Carrello
Attualità

Alla scoperta dell’Interferometria dell’Antimateria: i Top 10 Breakthrough of the Year in Physics

L’esperimento di interferenza della doppia fenditura realizzato per la prima volta con singoli antielettroni è stato scelto tra i Top 10 Breakthrough of the Year in Physics.

Interferometria dell’Antimateria: Breakthrough of the Year in Physics
1.53KVisite

L’esperimento di interferenza della doppia fenditura realizzato per la prima volta con singoli antielettroni è stato scelto tra i Top 10 Breakthrough of the Year in Physics. Si tratta di un prestigioso riconoscimento che viene attribuito ogni anno dalla rivista Physics World ai 10 progressi più rivoluzionari nel campo della fisica. L’esperimento è stato realizzato dai ricercatori del Politecnico di Milano, dell’INFN Istituto Nazionale di Fisica Nucleare, dell’Università degli Studi di Milano e del Centro Albert Einstein (AEC) per la Fisica Fondamentale e Laboratorio di Fisica delle Alte Energie (LHEP) dell’Università di Berna.

Il team è riuscito per la prima volta nella sofisticata impresa di realizzare l’esperimento impiegando singoli positroni. L’esperimento ha permesso di dimostrare che anche il positrone, ossia la corrispondente antiparticella dell’elettrone, ha una doppia natura: è sia onda che particella. Questa sua caratteristica è stata ricavata osservando per la prima volta l’interferenza di onde di antimateria con singoli positroni, e conferma che le leggi della meccanica quantistica valgono anche per l’antimateria.

I grandi successi non si ottengono solo nei grandi laboratori. Questo risultato è il frutto del lavoro tenace ed entusiasta di un piccolo gruppo di ricercatori appassionati commenta Rafael Ferragut, responsabile del Laboratorio Positroni L-NESS del Politecnico di Milano a Como, che ospita l’esperimento.

Come si svolge l’esperimento?

Nell’esperimento, che si basa sulla tecnica dell’interferometria, le “onde” di antimateria, generate da un singolo positrone, quando interferiscono costruttivamente collassano e si localizzano in un punto, comportandosi come una singola particella, e vengono così rivelate, dimostrando per la prima volta in modo diretto che il dualismo onda-particella vale anche per l’antimateria.

Si tratta della versione con singole particelle di antimateria del classico esperimento di interferenza della doppia fenditura, realizzato per la prima volta con fotoni da Thomas Young, proposto poi a livello concettuale con singole particelle da Albert Einstein, e quindi realizzato con singoli elettroni da Gian Franco Missiroli, Pier Giorgio Merli e Giulio Pozzi e pubblicato nel 1976.

Un fascio di particelle viene lanciato da una sorgente a un rivelatore. Nel corso del tragitto sono poste delle grate con due fenditure attraverso le quali passano le particelle. Se le particelle si comportassero solo come particelle, allora viaggerebbero in linea retta e produrrebbero sul rivelatore un disegno corrispondente alle fenditure. Ma se le particelle hanno una natura ondulatoria, sul rivelatore appare una figura a strisce, con diversi massimi e minimi, che non corrisponde alle fenditure. La nuova figura è generata dall’interferenza delle onde che passano attraverso le fenditure.

Dal punto di vista concettuale, per interpretare il risultato dell’esperimento è necessario considerare che una singola particella si propaga nello spazio anche come una vibrazione periodica, ossia come un’onda: un concetto introdotto da Louis de Broglie nel 1923. Dal punto di vista tecnico, per la sua realizzazione, i ricercatori hanno progettato e implementato un apparato estremamente accurato e di altissima precisione.

L’esperimento consiste di tre elementi principali: il fascio, l’interferometro e il rivelatore. Il fascio di positroni singoli di energia ben determinata è stato collimato per migliorarne la qualità di parallelismo. L’interferometro consiste in due serie di fenditure micrometriche con un alto grado di parallelismo e periodicità. La prima serie di fenditure è stata utilizzata per dare coerenza alle onde singole. In seguito, le onde si propagano nello spazio per una certa distanza sino ad arrivare alla seconda serie di fenditure dove formano fronti di onde secondarie. Queste onde interferiscono fra loro in modo costruttivo o distruttivo formando una figura o diagramma di interferenza sulle emulsioni posizionate più distanti.

L’originalità di aver usato una configurazione asimmetrica dell’interferometro consente di avere un ingrandimento pari a cinque volte della periodicità rispetto alla prima fenditura. In questo modo, la periodicità presente nella figura di interferenza ottenuta sulle emulsioni è stata di circa 6 micrometri. Si è trattato di un lavoro di estrema accuratezza.

Per due anni sono stati raccolti dati, e parallelamente sono stati apportati miglioramenti all’interferometro, sino a riuscire a vedere la risonanza con un segnale di alta visibilità. Per ogni misura è stata accumulata una statistica di circa venti milioni di positroni sulle emulsioni, uno alla volta, per un tempo di circa 8 giorni. L’andamento della visibilità delle frange in funzione dell’energia dimostra inequivocabilmente la natura quantistica dell’interferenza.

Ora, l’obiettivo a lungo termine dell’esperimento è utilizzare la straordinaria accuratezza dell’interferometria per misurare l’interazione gravitazionale materia-antimateria

X

Per leggere l'articolo, accedi o registrati

Non hai un account? Registrati!
X

Per leggere l'articolo, lascia la tua email

Oppure accedi